CANDU cousins in India – Performance in 2015

March 28, 2016

By: Donald Jones, P.Eng., retired nuclear industry engineer, 2016 March 28

Most of India’s nuclear reactors are of the pressurized heavy water reactor (PHWR) type with horizontal pressure tubes, just like the Canadian designed CANDU. In fact the first PHWR (not the first nuclear reactor) in India was the Rajasthan Atomic Power Project (RAPP) unit and was a CANDU designed by Atomic Energy of Canada Limited (AECL) that used the Douglas Point unit in Ontario as reference design but modified to aid localization. RAPP-1 entered commercial operation 1973 December. While RAPP-1 was being constructed the design of RAPP-2 was started (Author’s note: I know because I was part of design team). However the detonation of a nuclear device by India in 1974 curtailed completion of the design by AECL and India was on its own as far as nuclear technology was concerned. The design was completed by India and RAPP-2 eventually entered commercial operation in 1981 April. Since those early days India has developed its own indigenous designs of PHWRs with net electrical outputs of 202 MW, 490 MW, and 630 MW. They bear little to no resemblance to Douglas Point. All 17 PHWR units operating in 2015 (excludes RAPP-1 which has been shutdown since 2004) were 202 MW (220 MW gross) except for two 490 MW (540 MW gross) units. There were four 630 MW (700 MW gross) units under construction with none in operation. All PHWR power units, except for RAPP-1, are designed, owned, and operated by Nuclear Power Corporation of India Ltd. Several of the country’s PHWRs have been refurbished for extended life operation. For more detailed information on the Indian nuclear program see, Nuclear Power in India (reference 1).

The performance data are taken from the Power Reactor Information System (PRIS) database of the International Atomic Energy Agency (IAEA). Note that the Load Factor term used in the PRIS database has the same meaning as Capacity Factor (CF). CFs are based on the (net) Reference Unit Power and on the (net) Electricity Supplied, as defined in the PRIS database, so capacities referenced in this article are net electrical MW output. The lifetime, or cumulative, CF is based on the date of commercial operation and will include the outage time if the unit has been refurbished. Only the performance of India’s PHWRs is reviewed in detail but India’s three operating non-PHWR units are mentioned. Read the rest of this entry »

Advertisements

CANDU 6 Performance in 2015

March 28, 2016

By: Donald Jones, P.Eng., retired nuclear industry engineer, 2016 March 27

History

The two lead CANDU 6 projects were Gentilly 2 in Quebec and Point Lepreau in New Brunswick and these were quickly followed by Embalse in Argentina and Wolsong, now Wolsong 1, in South Korea and all came into service in the early to mid 1980s. These can be regarded as the first tranche of CANDU 6 build.

The second tranche of CANDU 6 units came with Wolsong 2, 3 and 4 in South Korea, Cernavoda 1 and 2 in Romania, and Qinshan 3-1 and 3-2 in China (the other units at Qinshan site are not CANDU), all entering service between 1996 to 2007. Each of the second tranche CANDU 6 units incorporate lessons learned from operation of the earlier units with changes to meet latest regulatory codes and standards.

More information on the CANDU 6 projects can be found in, CANDU 6 Performance in 2014 (reference 1). Note that the Power Reactor Information System (PRIS) database of the International Atomic Energy Agency (IAEA) identifies the Qinshan units in China as Qinshan 3-1 and Qinshan 3-2, that is, units 1 and 2 of Phase 3 of the Qinshan Nuclear Power Project. These were identified previously (reference 1) as Qinshan 4 and 5.

Capacity Factor

The Capacity Factors are taken from the PRIS database. Note that the Load Factor term used in the PRIS database has the same meaning as Capacity Factor. Capacity Factors are based on the (net) Reference Unit Power and on the (net) Electricity Supplied figures, as defined in the PRIS database. The annual Energy Availability Factor (reference 2) will only be given in this article if it is significantly different from the unit Capacity Factor.

CANDU 6 Units

Point Lepreau, New Brunswick, Canada. At the end of 2015, just over three years after refurbishment, the “refurbished lifetime” Capacity Factor was 75 percent and the annual Capacity Factor for 2015 was 74.0 percent. The lifetime Capacity Factor since start of commercial operation in 1983 was 69.7 percent, including the refurbishment outage. Read the rest of this entry »


Performance of Ontario’s CANDU nuclear generating stations in 2015

March 18, 2016

By: Donald Jones, P.Eng., retired nuclear industry engineer, 2016 March 19

At the end of 2015 Darlington had a four unit average lifetime Capacity Factor (CF) of 83.6 percent and an average annual CF of 76.1 percent. Bruce A had a four unit average lifetime CF of 69 percent and an average annual CF of 86.1 percent. Bruce B had a four unit average lifetime CF of 83.5 percent and an average annual CF of 84.4 percent. The six unit Pickering station had a six unit average lifetime CF of 72.4 percent and an average annual CF of 78.6 percent. Performance data for 2014 are discussed in reference 1.

The raw performance data for 2015 are taken from the Power Reactor Information System (PRIS) database of the International Atomic Energy Agency (IAEA). Note that the Load Factor term used in the PRIS database has the same meaning as CF. CFs are based on the (net) Reference Unit Power and on the (net) Electricity Supplied, as defined in the PRIS database.

The performance of some of Ontario’s nuclear generating stations is affected by the surplus of generation in the province. The surplus usually arises because of unreliable intermittent wind generation coming in at times of low demand and wind generation is expected to increase even more over the next several years. Some nuclear units saw electricity output reductions during periods of surplus baseload generation (SBG). This means the CFs are not a true performance indicator for those units (reference 2). A better metric of performance in these cases would be the Unit Capability Factor (UCF – used by Ontario Power Generation and by Bruce Power) or the Energy Availability Factors (EAF) that are shown in the PRIS database. The EAF adjusts the available energy generation for energy losses attributed to plant management and for external energy losses beyond the control of plant management while the UCF only includes energy losses attributed to plant management and excludes the external losses attributed to grid related unavailability and other things. This means that on unreliable grids, for example, UCF will be significantly higher than EAF but for Ontario there will be no significant difference. The UCF and the EAF take into account reductions in plant output due to load cycling and load following. For units that load cycle and/or load follow the CF will be significantly lower than the EAF. For example, Bruce B unit 5 has a 2015 annual CF of 86.4 percent and an EAF of 91 percent. The UCF and the EAF are based on reference ambient conditions so, unlike the CF, they cannot exceed 100 percent. In some cases the CF is more than the EAF because of lower than design cooling water temperatures that increase the electrical output of the unit. The only reason for using the EAF here (see later for Bruce units) instead of the UCF is that EAFs are now available in PRIS and UCFs are not presently available (well, the author could not find them).
Read the rest of this entry »