CANDU cousins in India – Performance in 2016

April 8, 2017

By: Donald Jones, P.Eng., retired nuclear industry engineer, 2017 April 5

Most of India’s nuclear reactors are of the pressurized heavy water reactor (PHWR) type with horizontal pressure tubes, just like the Canadian designed CANDU. In fact the first PHWR (not the first nuclear reactor) in India was the Rajasthan Atomic Power Project (RAPP) unit and was a CANDU designed by Atomic Energy of Canada Limited (AECL) that used the Douglas Point unit in Ontario as reference design but modified to aid localization. RAPP-1 entered commercial operation 1973 December. While RAPP-1 was being constructed the design of RAPP-2 was started (Author’s note: I know because I was part of design team). However the detonation of a nuclear device by India in 1974 curtailed completion of the design by AECL and India was on its own as far as nuclear technology was concerned. The design was completed by India and RAPP-2 eventually entered commercial operation in 1981 April. Since those early days India has developed its own indigenous designs of PHWRs with net electrical outputs of 202 MW, 490 MW, and 630 MW. They bear little to no resemblance to Douglas Point. All 17 PHWR units operating in 2016 (excludes RAPP-1 which has been shutdown since 2004) were 202 MW (220 MW gross) except for two 490 MW (540 MW gross) units. There were four 630 MW (700 MW gross) units under construction with none in operation. All PHWR power units, except for RAPP-1, are designed, owned, and operated by Nuclear Power Corporation of India Ltd. Several of the country’s PHWRs have been refurbished for extended life operation. For more detailed information on the Indian nuclear program see, Nuclear Power in India (reference 1).

The performance data are taken from the Power Reactor Information System (PRIS) database of the International Atomic Energy Agency (IAEA). Note that the Load Factor term used in the PRIS database has the same meaning as Capacity Factor (CF). CFs are based on the (net) Reference Unit Power and on the (net) Electricity Supplied, as defined in the PRIS database, so capacities referenced in this article are net electrical MW output. The lifetime, or cumulative, CF is based on the date of commercial operation and will include the outage time if the unit has been refurbished. Only the performance of India’s PHWRs is reviewed in detail but India’s three operating non-PHWR units are mentioned. Read the rest of this entry »


CANDU cousins in India – Performance in 2015

March 28, 2016

By: Donald Jones, P.Eng., retired nuclear industry engineer, 2016 March 28

Most of India’s nuclear reactors are of the pressurized heavy water reactor (PHWR) type with horizontal pressure tubes, just like the Canadian designed CANDU. In fact the first PHWR (not the first nuclear reactor) in India was the Rajasthan Atomic Power Project (RAPP) unit and was a CANDU designed by Atomic Energy of Canada Limited (AECL) that used the Douglas Point unit in Ontario as reference design but modified to aid localization. RAPP-1 entered commercial operation 1973 December. While RAPP-1 was being constructed the design of RAPP-2 was started (Author’s note: I know because I was part of design team). However the detonation of a nuclear device by India in 1974 curtailed completion of the design by AECL and India was on its own as far as nuclear technology was concerned. The design was completed by India and RAPP-2 eventually entered commercial operation in 1981 April. Since those early days India has developed its own indigenous designs of PHWRs with net electrical outputs of 202 MW, 490 MW, and 630 MW. They bear little to no resemblance to Douglas Point. All 17 PHWR units operating in 2015 (excludes RAPP-1 which has been shutdown since 2004) were 202 MW (220 MW gross) except for two 490 MW (540 MW gross) units. There were four 630 MW (700 MW gross) units under construction with none in operation. All PHWR power units, except for RAPP-1, are designed, owned, and operated by Nuclear Power Corporation of India Ltd. Several of the country’s PHWRs have been refurbished for extended life operation. For more detailed information on the Indian nuclear program see, Nuclear Power in India (reference 1).

The performance data are taken from the Power Reactor Information System (PRIS) database of the International Atomic Energy Agency (IAEA). Note that the Load Factor term used in the PRIS database has the same meaning as Capacity Factor (CF). CFs are based on the (net) Reference Unit Power and on the (net) Electricity Supplied, as defined in the PRIS database, so capacities referenced in this article are net electrical MW output. The lifetime, or cumulative, CF is based on the date of commercial operation and will include the outage time if the unit has been refurbished. Only the performance of India’s PHWRs is reviewed in detail but India’s three operating non-PHWR units are mentioned. Read the rest of this entry »